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Abetmet--The drag force on a particle in a fluid-multiparticle interaction system may be expressed as the 
product of the drag force on an unhindered particle, subject to the same volumetric flux of fluid, and a 
voidage function. It is demonstrated that for a wide variety of both fixed-bed and .suspended-particle 
systems, the voidage function may be expressed as e -P, where the exponent fl is dependent on the particle 
Reynolds number but independent of other system variables. 
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1. I N T R O D U C T I O N  

We are concerned here with the rather general problem of a multiparticle system swept by a fluid: 
the particles may be maintained in a fixed orientation, either by direct contact amongst themselves 
or by some other means; or they may be suspended in a fluidized bed or be falling through the 
fluid in a sedimenting process. 

Wallis (1969) has presented the general one-dimensional momentum equation for the particle 
phase as follows: 

( ~ v O v )  ap. [1] 
pp ~ + V ~ z  = b + f  az '  

where, for all the forces on the right-hand side, b represents all the body forces, -ap/~z  is the 
pressure gradient force, which, in general, should include contributions from both the fluid and 
particle pressures, and f accounts for all the surface forces acting on the solid phase that are not 
included in the pressure gradient term. Under uniform, steady-state conditions the left-hand side 
of  [1] vanishes, and for most practical purposes b reduces to the gravitational force; p, in the ~p/~z 
term, represents the fluid pressure; and f consists of  the sum of  the hydrodynamic drag and any 
direct contact force (from, for example, neighbouring particles). 

The terms in [1] represents forces per unit volume of  the particle phase; multiplying by the 
volume, V, of  a single particle and employing the above considerations yields the steady-state force 
balance for a single particle: 

- Vppg + F - vd-~ p_ = 0, [2] 
I A Z  

where F is the sum of  the single particle drag and contact forces, 

F = FD + Fc. [3] 

In the absence of  other particles, the force on a single particle exposed to a relative fluid flux 
u is FD = Fro, where 

FDO = CDo 9U: nd 2 
2 4" [4] 
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For spherical particles many well-established correlations are available for the drag coefficient Coo: 
that due to Dallavalle, 

( 48 y 
Coo = 0.63 + R---~3] , [51 

provides an adequate representation of the available empirical data over the full practical range 
of Re. 

The purpose of this paper is to examine how F D deviates from Fo0, [4], when the flow field is 
modified by the presence of other particles. Other interactions, "wall effects" etc., are not 
considered. 

2. THE VOIDAGE FUNCTI ON 

We start with the working hypothesis that the effect of the neighbouring particles on the drag 
force experienced by a particular particle may be considered solely as a function of the local 
volumetric particle concentration, or void fraction, e: 

FD = FDog(e). [6] 

In [6] it is understood that Fo and Foo are to be evaluated at the same v/due of the fluid flux, u, 
and hence at the same particle Reynolds number, Re = upd/q. Ideally we would like to obtain 
theoretical expressions for g(e); in practice, this approach appears limited to laminar flow through 
either very dilute suspensions (Batchelor 1972) or regular fixed arrays of spheres (Happel 1958). 
Experimental data from which g(~) can be evaluated numerically are, however, abundant for both 
fixed and suspended-particle systems over the full practical range of flow regime and particle 
concentration. 

It is necessary to admit openly at this stage that there appears to be no a priori reason for 
believing the voidage function, g(e), to be the same for physical systems as varied as, say, densely 
packed beds and dilute fluidized suspensions: the fact that the evidence presented below points to 
this convenient generalization is therefore surprising. 

3. N U M E R I C A L  EVALUATION OF THE VOIDAGE FUNCTION 

3.1. Fluidized and Sedimenting Beds 

In this case there are no contact forces, so F = FD. The pressure gradient for an equilibrium 
fluidized bed is given by 

dp 
d--'~ = - [( 1 - e)pp + ~p ]g. [7] 

Under these conditions, [2] yields 

~d 3 
FD = --if" (Pp -- P)ge. [8] 

Equation [8] enables FD tO be related to FDt, the drag on a single particle under terminal fluidization 
conditions, u = ut, e = 1: 

F o = FDt e. [9] 

In terms of the terminal condition drag coefficient, Cot, [9] becomes 

pu~ nd 2 
FD = CD, ~ ~ e. [10] 

Expressing also Foo in terms of  a drag coefficient, [4], leads to the general expression for the voidage 
function for fluidized and sedimenting beds: 

e. I l l ]  
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It should be emphasized that the two drag coefficients in [11] both relate to single, unhindered 
particle systems and so may be evaluated using, for example, [5]. 

To obtain numerical evaluations ofg(5), data relating the fluidizing flux, u, to the void fraction, 
5, are necessary. These can be provided by the empirical Richardson-Zaki equation 

U 
- -=e" ,  [12] 
Ut 

where the exponent, n, is a well-documented function of the terminal Reynolds number, Ret, 
evaluated at velocity ut (Richardson & Zaki 1984). 

3.1. I. The low Re regime 

Under these conditions we have 

and 

24 

CDt Ret u 
Coo 24 ut 

Re 

[13] 

, 1,4, 

Applying [12] and the empirical value for the exponent n for low Reynolds number conditions, 
n = 4.65, yields 

g(e) = 51 -" = e-365. [15] 

3.2.1. The high Re regime 

In this regime the drag coefficient is independent of velocity: 

CD, 
CD0 

Thus, 

[16] 

n is also constant in this regime and equal to 2.35, thus 

g(5) = 8l-2n = e-37. [18] 

These results, [15] and [18], are well-known and the fact that the voidage function turns out to be 
identical, for practical purposes, for extreme conditions has led to the adoption of the same 
expression for the intermediate flow regime as well (Wen & Yu 1966; Wallis 1969; Richardson & 
Jeronimo 1976; Foscolo et al. 1983). 

Kahn & Richardson (1990) have pointed out that such a generalization is inconsistent with 
observations of fluidized bed behaviour: [11] enables us to put these reservations on a quantitative 
footing. 

3.1.3. The intermediate regime 

Figure 1 shows numerical evaluations of the voidage function, g(5), for a range of values of Re. 
These were obtained as follows from [11]. 

First, a value of Re was selected and the unhindered drag coefficient, CD0, corresponding to this 
value was evaluated from [5]. A value of the void fraction, e, was then selected and the 
corresponding value of Ret evaluated by iteration on the following equations: 

Re 
- - = 5 "  [19] 
Ret 
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Figure 1. The voidage function for fluidized bed systems at 
selected values of Re. 
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Figure 2. The exponent /~ for fluidized bed systems as a 
function of Re. 

and  

4.7 - n  
n - 2.35 = 0.175Ret °'75. [20] 

Equa t ion  [19] is, o f  course,  the R icha rdson  & Zak i  (1954) equa t ion  and  [20] is the convenien t  
con t inuous  form o f  the or iginal  cor re la t ion  for  n p r o p o s e d  by  Rowe  (1987). The  d r ag  coefficient, 
Cm in this case, was then ob ta ined  f rom [5] using the eva lua ted  Re t value and  employed  in [11] 
to del iver  one po in t  on  the g ( e )  vs 8 plot .  The  p rocedure  was then repeated  for  o ther  values o f  

It will be seen that the logarithmic plots of figure 1 approximate to straight lines, thereby enabling 
the voidage function to be expressed as 

g(e) = e-~, [21] 
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Figure 3. The voidage function evaluated from the data of 
Happel & Epstein (19M). The solid lines represent the best 

linear fit of the experimental values. 
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Figure 4. The voidage function evaluated from the data of 
Rumpf & Gupte (1971). The solid lines represent the best 

linear fit of the experimental values. 
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where fl depends only on Re. Figure 2 reports evaluations of fl over the full working range of Re: 
it will be seen that fl departs from the constant value of about 3.7 found in the low and high Re 
regimes, passing through a minimum of about 3.1 at an Re of about 30. 

3.2. Fixed Beds 

The action of the drag force between the particle and fluid phases results in energy dissipation 
and, as a consequence, a reduction in pressure in the fluid as it passes through a bed, in addition 
to any change brought about by a change in elevation. 

For fixed beds, numerous data for this "piezometric" pressure loss, AP, are available and may 
be used for the evaluation of the voidage function. In order to apply [6] for this purpose, it is first 
necessary to relate the particle drag force, FD, to the piezometric pressure loss as follows. 

Equation [2], for a fixed bed in which there are particle-particle contact forces, [3], can be written 
a s  

F D - V-~z z = Vppg - F  c . [22] 

The left-hand side of [22] represents the mutual fluid-particle interaction force which acts on a 
particle and, in the opposite direction, on the fluid. Thus, the momentum equation for a unit 
volume of the fluid phase may be written as 

- e p g - - ( F D - - V  ~Pz) 1 -- ~ dp V dz = 0. [23] 

Rearrangement of [22] and introduction of the piezometric pressure gradient, 

dP dp + pg, [241 
dz dz 

yields the required relationship for a bed of spheres: 

where 

)Ae 
FD= 6 \ 1 - -5 , ]  Z '  [25] 

dP 
AP = - L - - .  [26] 

dz 

Equation [25] may also be derived from energy balance considerations (Foscolo et al. 1983). 
Inserting this expression for FD, together with the drag coefficient expression for Fo0, [4], into 

the definition of the voidage function, [6], yields 

4 ~ dAP 
g(e) = 3C~ 1--Z-~ pu2----L" [27] 

For a given value of Re, Coo may be evaluated, as before, from [5]; empirical data for the 
dimensionless piezometric pressure loss, dAP/pu2L, as a function of Re and e then enable g(e) to 
be evaluated from [27]. 

The vast majority of the empirical data for fixed beds relates to randomly packed spheres for 
which the void fraction hardly varies from a value of about 0.4; we will see below how, in spite 
of this obvious limitation, a tentative estimate of how the voidage function varies with the voidage 
fraction can be made. First, we consider data obtained for fixed beds of spheres in which, by one 
means or another, the void fraction has been made to vary over a considerable range. These data 
have been examined previously in a somewhat different context (Gibilaro et al. 1985); they include 
the wind-tunnel results of Wenz & Thodos (1963), obtained using spheres connected together in 
fixed arrays, which have not been used in the present study as no way is provided to account for 
the effect of the connecting structure: because of this, extrapolated values of g(e), at e = 1, are 
about 2.5 instead of the correct value of 1. 
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3.2.1. The data of Happel & Epstein (1954) 
In these experiments fixed, cubic arrangements of spheres were constructed using beads threaded 

on to slender rods; the resulting voidage fractions covered the range from 0.69 to 0.94. Glycerol 
solutions were passed through these beds at Re values between 0.4 and 11 and the results reported 
by means of an empirical equation for the piezometric pressure loss as a function of Re and e. 

Figure 3 shows logarithmic plots of g(e) vs e obtained using [27] for two parametric values of 
Re: these will be seen to lie on straight lines with an intercept close to 1 at the single particle (e = l) 
limit, yielding B values of 3.9 and 3.1 at Re values of 1 and 10, respectively. 

3.2.2. The data of Rumpf & Gupte (1971) 
These experiments involved beds of random packed spheres at void fractions of up to 0.64 held 

together by adhesion at contact points. Numerical values for the dimensionless pressure drop, 
dAP/pu2L, were provided for both gas and liquid fluxes at Re values between 0.01 and 100. 

Figure 4 illustrates examples of g(e) relationships obtained from these data: once again the 
intercept at e = 1 approximates to 1 in every case, with B values ranging from 3.6, in the low Re 
regime, to about 3.05. 

3.2.3. The Ergun (1952) correlation 
The extensive data for flow through random packed spheres, for which e ~ 0.4, are well-corre- 

lated by the Ergun equation: 

aAP 1 ] 
pu2---'-L= e3 L Re I - 1 . 7 5 .  

Applying this relationship to [27] yields 

[281 

14.6(1 51.4\_ 
g(0.4) = + -Re-e ) " [29] 

If we now postulate a relationship of the form g(e) = e -~, fl may be computed from the extreme 
values: [29] for e = 0.4 and g(1) = 1. 

4. RESULTS AND CONCLUSIONS 

Figure 5 shows all the numerical calculations of the voidage function obtained as described 
above. It is evident that the fixed-bed results (from both the Ergun equation at e = 0.4, and the 
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Figure 5. The exponent fl evaluated from all the data reported in this work and from [30] as a function 
of Re. 
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expanded fixed-bed data) are consistent with those for fluidized beds: a clear minimum is revealed 
at a Re in the range 20-80. All the results are reasonably fitted by the following empirical expression 
for the exponent fl: 

[ (1"5 2 x'2" 1 fl = 3.7 - 0.65 exp , [30] 

where x = log(Re). The effect of this variation in fl across the practical range of operation of 
fluid-particle interaction processes is unlikely to be of major significance but should, nevertheless, 
be taken into account. 
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